

1. Part of the curve with equation $y = x^2 - 5x + 3$ is drawn on the grid.

The equation of another curve is $y = -\frac{x^3}{6} + \frac{6x^2}{5} - \frac{3x}{2}$

(a) Complete the table of values for $y = -\frac{x^3}{6} + \frac{6x^2}{5} - \frac{3x}{2}$

Give your values of y to 2 decimal places.

х	0	0.5	1	2	3	4	4.5	5
у	0	-0.47	-0.47	FP.0	1.8	2.53	2.36	1.67

- (b) On the grid opposite, plot the points from your completed table and join them to form a smooth curve.
- (c) Use the two curves on the grid to find an estimate, to 2 decimal places, of the range of positive values of x for which $\frac{x^3}{6} \frac{x^2}{5} \frac{7x}{2} + 3 < 0$ Show your working clearly.

For positive values of x, the two curves on the grid intersect at the points P and Q.

(d) Find an estimate, to 1 decimal place, of the gradient of the straight line through P and Q.

The equation of the straight line through P and Q has the form y = ax + b

(e) Find, to 1 decimal place, the value of b.

e)
$$y = mx + C$$

At $(0.85, -0.5)$ Society
 $-0.5 = 0.61(0.85) + C$

$$c = -10$$

2. The equation of a curve C is $y = \frac{(2x-3)(kx+5)}{x}$, where k is a constant.

The point A on C is a stationary point.

Given that the x coordinate of A is $\frac{1}{2}$ find the value of k.

of k.

$$y = \frac{(2x-3)(kx+5)}{x}$$

$$= \frac{2kx^{2} + 10x - 3kx^{2} - 15}{x}$$

$$= \frac{2kx + 10 - 3k - \frac{15}{x}}{x}$$

$$\frac{dy}{dx} = 2k + \frac{15}{x^{2}}$$

$$2k + \frac{15}{(\frac{1}{2})^{2}} = 0$$

3. Given that $-3x^2 + 6x + 2$ can be written in the form $a(x+b)^2 + c$ where a, b and c are integers, find the value of a, the value of b and the value of c.

$$-3x^{2} + 6x + 2 = 3(x+b)^{2} + C$$

$$-3x^{2} + 6x + 2 = 3x^{2} + 2abx + 3b^{2} + C$$

$$3 = -3$$

$$2abx = 6$$

$$2ab = 6$$

$$2(-3)b = 6$$

$$b = -1$$

$$3b^{2} + C = 2$$

$$-3(-1)^{2} + C = 2$$

$$-3 + C = 2$$

$$C = 5$$

$$\therefore a=-3, b=-1, c=5$$

4. The curve C has equation

$$y = x^2 + 2x + \frac{4}{x} \qquad x \neq 0$$

(a) Complete the table of values for C

х	-4	-2	-1	-0.5	0.5	1	2	4
у	7	- 2	-5	-8.75	9.25	7	10	25

(b) On the grid opposite, plot the points from your completed table.

The curve has one turning point and this has coordinates (1, 7)

- (c) Use your points to draw the graph of $y = x^2 + 2x + \frac{4}{x}$ $x \neq 0$
- (d) Using your graph, find an estimate, to one decimal place, for the solution of the equation

$$x^2 + 2x + \frac{4}{x} = 0$$

(e) By drawing a suitable line on the grid estimate, to one decimal place, the solutions of the equation

(0, 1.5)

$$x^2 + 2x + \frac{4}{x} = 5x + \frac{3}{2}$$

x=-1.2, 1.1, 3.1

5. The equation of a curve C is $y = x^2 - \frac{3}{2}x - 1$

The curve C has a minimum at the point A

- (a) Show that the coordinates of A are (0.75, -1.5625)
- (b) Complete the table of values for $y = x^2 \frac{3}{2}x 1$

X	-3	-2	-1	0	1	2	3	4
у	12.5	6	1.5	-1	-1.5	0	3.5	9

The point A has been plotted on the grid opposite.

- (c) On the grid opposite, draw the curve with equation $y = x^2 \frac{3}{2}x 1$ for values of x from -3 to 4
- (d) Using your curve, find an estimate, to one decimal place, for the range of values of x for which $x^2 \frac{3}{2}x 1 \le 3$

Show your working clearly.

(e) By drawing a suitable straight line on the grid, find estimates, to one decimal place, of the solutions of the equation $x^2 - \frac{7}{2}x = \frac{1}{2}$

Show your working clearly.

$$x^{2} - \frac{3}{2}x - 1 = 2x - 0.5$$
 $y = 2x - 0.5$
The oil 13.6 ths

Society

Given that, for all values of x,

$$8x^2 - 48x + 10 = a(x+b)^2 + c$$
 where a, b and c are integers,

find the value of a, the value of b and the value of c. Show your working clearly.

$$8x^{2} - 46x + 10 = 3(x+b)^{2} + C$$
 $8x^{2} - 46x + 10 = 3x^{2} + 23bx + 3b^{2} + C$
 $3 = 8$
 $2ab = -48$
 $2(8)b = -48$
 $b = -3$
 $3b^{2} + C = 10$
 $(8)(-3)^{2} + C = 10$
 $72 + C = 10$
 $C = -62$

The $8.05 = 3.5$

Society

7. By writing $8x^2 - 56x + 17$ in the form $p(x+q)^2 + r$ find the exact solutions of the equation

$$8x^2 - 56x + 17 = 0$$

Give your answer in the form $\frac{a \pm b\sqrt{2}}{c}$ where a, b and c are integers. Show your working clearly.

For working clearly.

$$8x^2 - 56x + 17 = p(x+q)^2 + Y$$
 $8x^2 - 56x + 17 = px^2 + 2qpx + pq^2 + Y$
 $p = 8$
 $2qp = -56$
 $2(8)q = -56$
 $q = -3.5$
 $pq^2 + r = 17$
 $8(-3.5)^2 + Y = 17$
 $Y = 17 \cdot 98$
 $8(x - 3.5)^2 - 81 = 6$
 $(x - 3.5)^2 - 81 = 6$
 $x - 3.5 = \frac{81}{8} + 3.5$
 $x = \pm \left[\frac{81}{8} + 3.5\right]$
 $x = \pm \left[\frac{81}{8} + 3.5\right]$
 $x = \frac{14}{7} \pm \frac{912}{4}$
 $x = \frac{14}{7} \pm \frac{912}{4}$
 $x = \frac{14}{7} \pm \frac{912}{4}$

A particle P is moving along a straight line through the fixed point O 8. The speed, v m/s, of P at time t seconds is given by

$$v = \frac{t^2}{27} + 2 + \frac{3}{t^2}$$
 for $1 \le t \le 5$

(a) Complete the table of values for $v = \frac{t^2}{27} + 2 + \frac{3}{t^2}$

Give your values of v to 2 decimal places.

t	1	1.5	2	2.5	3	3.5	4	4.5	5
v	5.04	3.42	2.90	2.71	2.67	2.70	2.78	2.90	3.05

- (b) On the grid opposite, plot the points from your completed table and join them to form a smooth curve.
- (c) Using your curve, find an estimate, to one decimal place, for the speed of P when t = 1.75

The acceleration of P at time t seconds where $1 \le t \le 5$ is $a \text{ m/s}^2$ (d) Find an expression for a in terms of t

$$V = \frac{+2}{27} + 2 + \frac{3}{+2}$$

$$a = \frac{2t}{24} - 6t^{-3}$$

(e) Using your answer to part (d), find the value of t when P has its minimum speed in the time interval $1 \le t \le 5$ Show clear algebraic working.

